|
A drug interaction is a situation in which a substance (usually another drug) affects the activity of a drug when both are administered together. This action can be synergistic (when the drug's effect is increased) or antagonistic (when the drug's effect is decreased) or a new effect can be produced that neither produces on its own. Typically, interactions between drugs come to mind (drug-drug interaction). However, interactions may also exist between drugs and foods (drug-food interactions), as well as drugs and medicinal plants or herbs (drug-plant interactions). People taking antidepressant drugs such as monoamine oxidase inhibitors should not take food containing tyramine as hypertensive crisis may occur (an example of a drug-food interaction). These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances.〔" ''National Prescribing Service'', 2009. Available at http://nps.org.au/news_and_media/media_releases/repository/Forget_the_colour_shape_or_brand__its〕 It is therefore easy to see the importance of these pharmacological interactions in the practice of medicine. If a patient is taking two drugs and one of them increases the effect of the other it is possible that an overdose may occur. The interaction of the two drugs may also increase the risk that side effects will occur. On the other hand, if the action of a drug is reduced it may cease to have any therapeutic use because of under dosage. Notwithstanding the above, on occasion these interactions may be sought in order to obtain an improved therapeutic effect.〔María Soledad Fernández Alfonso, Mariano Ruiz Gayo. ''(Fundamentos de Farmacología Básica y Clínica )''. Published by Steve Bob Billy Joe, 2005; page 232. ISBN 84-8004-689-9〕 Examples of this include the use of codeine with paracetamol to increase its analgesic effect. Or the combination of clavulanic acid with amoxicillin in order to overcome bacterial resistance to the antibiotic. It should also be remembered that there are interactions that, from a theoretical standpoint, may occur but in clinical practice have no important repercussions. The pharmaceutical interactions that are of special interest to the practice of medicine are primarily those that have negative effects for an organism. The risk that a pharmacological interaction will appear increases as a function of the number of drugs administered to a patient at the same time. It is possible that an interaction will occur between a drug and another substance present in the organism (i.e. foods or alcohol). Or in certain specific situations a drug may even react with itself, such as occurs with dehydration. In other situations, the interaction does not involve any effect on the drug. In certain cases, the presence of a drug in an individual's blood may affect certain types of laboratory analysis (analytical interference). It is also possible for interactions to occur outside an organism before administration of the drugs has taken place. This can occur when two drugs are mixed, for example, in a saline solution prior to intravenous injection. Some classic examples of this type of interaction include that Thiopentone and Suxamethonium should not be placed in the same syringe and same is true for Benzylpenicillin and Heparin. These situations will all be discussed under the same heading due to their conceptual similarity. Drug interactions may be the result of various processes. These processes may include alterations in the pharmacokinetics of the drug, such as alterations in the absorption, distribution, metabolism, and excretion (ADME) of a drug. Alternatively, drug interactions may be the result of the pharmacodynamic properties of the drug, e.g. the co-administration of a receptor antagonist and an agonist for the same receptor. == Synergy and antagonism == When the interaction causes an increase in the effects of one or both of the drugs the interaction is called a synergistic effect. An "additive synergy" occurs when the final effect is equal to the sum of the effects of the two drugs (Although some authors argue that this is not true synergy). When the final effect is much greater than the sum of the two effects this is called enhanced synergy. This concept is recognized by the majority of authors, although other authors only refer to synergy when there is an enhanced effect. These authors use the term "additive effect" for additive synergy and they reserve use of the term "synergistic effect" for enhanced synergy.〔Suárez Zuzunaga, A. ''Justificación Farmacológica para las Asociaciones Analgésicas '' Available on ()〕 The opposite effect to synergy is termed antagonism. Two drugs are antagonistic when their interaction causes a decrease in the effects of one or both of the drugs. Both synergy and antagonism can both occur during different phases of the interaction of a drug with an organism, with each effect having a different name. For example, when the synergy occurs at a cellular receptor level this is termed agonism, and the substances involved are termed ''agonists''. On the other hand, in the case of antagonism the substances involved are known as inverse agonists. The different responses of a receptor to the action of a drug has resulted in a number of classifications, which use terms such as "partial agonist", "competitive agonist" etc. These concepts have fundamental applications in the pharmacodynamics of these interactions. The proliferation of existing classifications at this level, along with the fact that the exact reaction mechanisms for many drugs are not well understood means that it is almost impossible to offer a clear classification for these concepts. It is even likely that many authors would misapply any given classification.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「drug interaction」の詳細全文を読む スポンサード リンク
|